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Block-structured Markov chains

M/G/1-type Markov chains

Consider a time homogeneous discrete-time M/G/1-type
Markov chain ®,, with substochastic transition matrix:

B, B, B, B
G A1 A A
PM: 0 Ao A1 A2
0 0 A A

where Gy, A; and B; are square matrices of order m < co.

Its state space is £ = |J;—, L;, where L; = {(i,j),1 <j < m}.
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Block-structured Markov chains

Gl /M/1-type Markov chains

A discrete-time G/ /M /1-type Markov chain is of the following
substochastic transition matrix:

Do Av 0 0
D AL Ay O
Pg = D, Ay A Ao
Dy As A A

where A, A; and D;, i > 0 are square matrices of order m.
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Block-structured Markov chains

An illustrating example

Block-structured Markov chains are also called matrix-analytic
models, which model many queueing problems.

Example: consider an M/M/1 queue in a Markovian
environment, which is a continuous-time Markov chain
{®: = (N(2), E(1)), t = 0}:

> N(t) is the queue length at time t.

> E(t) is a m-state CTMC with rates s;;, 1 <i,j < m.

> N(t) is controlled by E(t): when E(t) = j, the arrival rate is
Aj and the service rate is y;, provided that the server is busy
at time t.
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Block-structured Markov chains

Let m = 3, then the generator Q of &, is a QBD matrix

where B =

Q=

B A

Ao

0 A

0

A

0

0 0
A 0
A A ,
Ao A
pe 00
, Ag = 0 w2 O
0 0 ps
M 0 0
LAy = 0 X O
0 0 X3
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Block-structured Markov chains

Some literature

> M/G/1-type Markov chains and G//M/1-type Markov
chains are typical block-structured Markov chains.

> See Neuts (1981, 1988) for introduction.

> See Latouche & Taylor (2003) for the criteria for transience
and recurrence by drift conditions.

> See Hou & Liu (2004), Liu & Hou (2006) and Mao et al.
(2012) for ergodicity.

> See Kijima (1993) and Li & Zhao (2002, 2003) for
transience and subinvariant measures.

> Mao and Song (2014) investigated geometric and algebraic
transience for DTMCs on a general state space.
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Block-structured Markov chains

Motivation

> Ramaswami (1990) revealed the duality relationship between
the matrix G(s) of M/G/1-type Markov chain and the matrix
R(s) of GI/M/1-type Markov chain as follows:

R(s) = A7'G'(s)A,
where A be the diagonal matrix with ;™ on the diagonal.

> Zhao et al. (1999) extended Ramaswami's duality to derive:
for stochastic transition matrices

Py is positive recurrent iff Pg is transient.

Py is transient iff Pg is positive recurrent.
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Block-structured Markov chains

> Based on the observation, it is natural to ask if

geometric and algebraic ergodicity of Py, (Pg) correspond to
geometric and algebraic transience of Pg; (Pu) with some
additional conditions, respectively.

> We are motivated to answer the above question. Moreover,
we will give a full characterization of geometric and algebraic
transience for M/ G /1-type or GI /M /1-type Markov chains.

> To investigate the quasi-stationary behavior, see Bean et al
(1997) for QBD processes.
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Preliminariles

Definition 1: Let ®, be an irreducible DTMC on a countable
state space. Then

(i) , is said to be transient if 32°° P{” < oo;

(i) @, is said to be geometrically transient (GT) if there exists
a constant s > 1 such that >, s”P,-(,-") < 00;

(iii) @, is said to be (-transient if there exists a positive
integer ¢ such that 3.2 P! <

Note: GT=- (-transience for any ¢ > 1 = transience.
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Preliminariles

Define the first passage time on a non-empty subset A C E by
Ta=inf{n>1:0, € A}
and define the probability of @, ever returning to A by

F,'A: P{TA < OO|CD0:I}

When A = {i}, write simply 74 = 7; and Fia = Fj;.

12/26



Preliminariles

Proposition 1: Suppose that the chain is irreducible. For
r(n)=n* € Z, or r(n) = s",s > 1, the following
statements are equivalent.

(i) For some (then for all) i € E, 35 r(n)P{" < c.
(ii) For some (then for all) i € E, F; < 1 and
E,‘[I‘(T,')].{T,.<OO}] < 0.
(iii) For some (then for all) finite non-empty set A C E,
MaXicA D e r(n)P,-(:) < 0.

(iv) For some (then for all) finite non-empty set A C E,
maxica Ei[r(7a)1{r,<c0}] < 00 and Fja < 1 for some
JjEA

Note: use the arguments in Chen (2004) to show (iii)= (iv).
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Main results

Recall M/G/1 and GI/M/1 chains
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Let
fii,j),(i/,j/)(N) = P{TL,-/ =n &, = (i/7j/)|¢0 = (I’J)}

be the probability that starting in the state (/,j) at time 0, the
chain ®,, first returns to level // by hitting the phase j’, after
exactly n € N transitions.

> In matrix form, we write f:(n) = (fi ), (n))-
> Define the generating function F(s) = > fir(n)s".

> Let G(s) = Fiz1.i(s),i > 1, which is independent of i
because of the level-independent property of P.
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Main results

Mean drift

> Throughout assume that A :=)"/7 Ay is irreducible.

> If Ais stochastic, there is a unique invariant probability
vector of A, denoted by p”, such that u” A= p' and

ple=1.
> Define d = u"v — 1. Then

f: —lAk—A()]e

k=1

is mean drift of the chains, which is a key quantity for
analyzing stability and transience.
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Main results

M/G/1-type Markov chains

Theorem 1: Let Py be an irreducible M/G/1-type MC.

Case 1: both Py and A are stochastic. If Py is transient (i.e.
d > 0), then Py, is GT.

Case 2: Py, is not stochastic but A is stochastic.
(i) If d > 0, then Py is GT.

(ii) If d =0 and G is irreducible, then Py, is transient but not
(-transient for any ¢ > 1.

(iii) If d < 0, then Py is GT iff min{ca, d5} > 1 (6 is the
radius of convergence of A(z)); and Py, is (-transient for some
(>1 iff 220:0 kak < 0o and zzo:o szk < 00.

Case 3: A is not stochastic. Py is GT.
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Main results

Remarks about proof

(i) Using Proposition 1: through three basic equations

Fio(s) = sCo+ > _ sA,G*7*(s)Fo(s).
v=1

o0

G(s) = Z sA,G"(s).

v=0

(i) Spectral properties + matrix analytical arguments+ & JE &
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Main results

GI/M/1-type Markov chains

Theorem 2: Let Pg be an irreducible GI/M/1-type MC.

Case 1: both Pg and A are stochastic. If Pg is transient
(d < 0), then Pg is GT iff ¢4 > 1, and Pg is (-transient for
some ¢ > 1iff Y07 k*TTA, < oo.

Case 2: Pg is not stochastic, but A is stochastic.

(i) If d <0, then Pg is GT iff ¢4 > 1; and Pg is (-transient
for some ¢ > 1iff 72 k“t1A, < oo

(ii) If d = 0 and G is irreducible, then Pg is not (-transient
for any ¢ > 1.

(iii) If d > 0O, then Pg is GT.
Case 3: neither P¢g; nor A is stochastic. Pg is GT.
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Main results

Remarks about proof

Using Proposition 1: we do not have similar equations like
that for Py, which causes difference.

For example, to consider algebraic transience for Pg;, define

o0

F(s,z) = Z Fio(s)z', D(z) = Z Dz*, s<1,z<1.
i=1 k=1

Then we can express Fig(s) through (Hou and Liu 2004)

(zI —sA(z))F(s,z) = sz[D(z) — AoF1o(s)].
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Main results

Extension to CTMCs

> Consider a CTMC &, with irreducible and bounded
generator @ and transition function Pj(t).

> Let h > g and define the h-uniformized chain ®"(n) with
transition matrix P; = (I + h™'Q);;, i,j € E. Using

Pi(t) = (e9); =3 B (n)e- )

n!
shows that algebraic transience and geometric transience are

equivalent for ®, and ®"(n).

> Using Theorems 1 and 2, we can get the classification of
transience for continuous-time chains.
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Welcome to 16th WMPRT at CSU in Changshal
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Thank you for your attention!
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