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M/G/1-type Markov chains

Consider a time homogeneous discrete-time M/G/1-type
Markov chain Φn with substochastic transition matrix:

PM =


B0 B1 B2 B3 ...
C0 A1 A2 A3 ...
0 A0 A1 A2 ...
0 0 A0 A1 ...
...

...
...

... . . .

 ,

where C0, Ai and Bi are square matrices of order m <∞.

Its state space is E =
⋃∞

i=0 Li , where Li = {(i , j), 1 ≤ j ≤ m}.
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GI/M/1-type Markov chains

A discrete-time GI/M/1-type Markov chain is of the following
substochastic transition matrix:

PGI =


D0 Ã0 0 0 ...
D1 A1 A0 0 ...
D2 A2 A1 A0 ...
D3 A3 A2 A1 ...
...

...
...

... . . .

 ,

where Ã0, Ai and Di , i ≥ 0 are square matrices of order m.

4 / 26



Block-structured Markov chains Preliminariles Main results References

An illustrating example

Block-structured Markov chains are also called matrix-analytic
models, which model many queueing problems.

Example: consider an M/M/1 queue in a Markovian
environment, which is a continuous-time Markov chain
{Φt = (N(t),E (t)), t ≥ 0}:
. N(t) is the queue length at time t.

. E (t) is a m-state CTMC with rates sij , 1 ≤ i , j ≤ m.

. N(t) is controlled by E (t): when E (t) = j , the arrival rate is
λj and the service rate is µj , provided that the server is busy
at time t.
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Let m = 3, then the generator Q of Φt is a QBD matrix

Q =


B A2 0 0 ...
A0 A1 A2 0 ...
0 A0 A1 A2 ...
0 0 A0 A1 ...
...

...
...

... . . .

 ,

where B =

 ∗ s12 0
0 ∗ s23

s31 s32 ∗

, A0 =

 µ1 0 0
0 µ2 0
0 0 µ3

,

A1 =

 • s12 0
0 • s23

s31 s32 •

, A2 =

 λ1 0 0
0 λ2 0
0 0 λ3

.
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Some literature

. M/G/1-type Markov chains and GI/M/1-type Markov
chains are typical block-structured Markov chains.

. See Neuts (1981, 1988) for introduction.

. See Latouche & Taylor (2003) for the criteria for transience
and recurrence by drift conditions.

. See Hou & Liu (2004), Liu & Hou (2006) and Mao et al.
(2012) for ergodicity.

. See Kijima (1993) and Li & Zhao (2002, 2003) for
transience and subinvariant measures.

. Mao and Song (2014) investigated geometric and algebraic
transience for DTMCs on a general state space.
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Motivation

. Ramaswami (1990) revealed the duality relationship between
the matrix G (s) of M/G/1-type Markov chain and the matrix
R(s) of GI/M/1-type Markov chain as follows:

R(s) = ∆−1GT (s)∆,

where ∆ be the diagonal matrix with µT on the diagonal.

. Zhao et al. (1999) extended Ramaswami’s duality to derive:
for stochastic transition matrices

PM is positive recurrent iff PGI is transient.

PM is transient iff PGI is positive recurrent.
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. Based on the observation, it is natural to ask if

geometric and algebraic ergodicity of PM (PGI ) correspond to
geometric and algebraic transience of PGI (PM) with some
additional conditions, respectively.

. We are motivated to answer the above question. Moreover,
we will give a full characterization of geometric and algebraic
transience for M/G/1-type or GI/M/1-type Markov chains.

. To investigate the quasi-stationary behavior, see Bean et al
(1997) for QBD processes.
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Definition 1: Let Φn be an irreducible DTMC on a countable
state space. Then

(i) Φn is said to be transient if
∑∞

n=0 P (n)
ii <∞;

(ii) Φn is said to be geometrically transient (GT) if there exists
a constant s > 1 such that

∑∞
n=1 snP (n)

ii <∞;

(iii) Φn is said to be `-transient if there exists a positive
integer ` such that

∑∞
n=1 n`P (n)

ii <∞.

Note: GT⇒ `-transience for any ` ≥ 1 ⇒ transience.
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Define the first passage time on a non-empty subset A ⊂ E by

τA = inf{n ≥ 1 : Φn ∈ A}

and define the probability of Φn ever returning to A by

FiA = P{τA <∞|Φ0 = i}.

When A = {i}, write simply τA = τi and FiA = Fii .
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Proposition 1: Suppose that the chain is irreducible. For
r(n) = n`, ` ∈ Z+ or r(n) = sn, s ≥ 1, the following
statements are equivalent.

(i) For some (then for all) i ∈ E,
∑∞

n=0 r(n)P (n)
ii <∞.

(ii) For some (then for all) i ∈ E, Fii < 1 and
Ei [r(τi)1{τi<∞}] <∞.

(iii) For some (then for all) finite non-empty set A ⊂ E,
maxi∈A

∑∞
n=0 r(n)P (n)

iA <∞.

(iv) For some (then for all) finite non-empty set A ⊂ E,
maxi∈A Ei [r(τA)1{τA<∞}] <∞ and FjA < 1 for some
j ∈ A.

Note: use the arguments in Chen (2004) to show (iii)⇒ (iv).
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Recall M/G/1 and GI/M/1 chains

PM =


B0 B1 B2 B3 ...
C0 A1 A2 A3 ...
0 A0 A1 A2 ...
0 0 A0 A1 ...
...

...
...

... . . .

 ,

PGI =


D0 Ã0 0 0 ...
D1 A1 A0 0 ...
D2 A2 A1 A0 ...
D3 A3 A2 A1 ...
...

...
...

... . . .

 .
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Let

f(i ,j),(i ′,j ′)(n) = P{τLi′
= n,Φn = (i ′, j ′)|Φ0 = (i , j)}

be the probability that starting in the state (i , j) at time 0, the
chain Φn first returns to level i ′ by hitting the phase j ′, after
exactly n ∈ N+ transitions.

. In matrix form, we write fii ′(n) = (f(i ,j),(i ′,j ′)(n)).

. Define the generating function Fii ′(s) =
∑∞

n=1 fii ′(n)sn.

. Let G (s) = Fi+1,i(s), i ≥ 1, which is independent of i
because of the level-independent property of PM .
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Mean drift

. Throughout assume that A :=
∑∞

k=0 Ak is irreducible.

. If A is stochastic, there is a unique invariant probability
vector of A, denoted by µT , such that µTA = µT and
µTe = 1.

. Define d = µTν − 1. Then

d = µT

[
∞∑

k=1

(k − 1)Ak − A0

]
e

is mean drift of the chains, which is a key quantity for
analyzing stability and transience.
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M/G/1-type Markov chains

Theorem 1: Let PM be an irreducible M/G/1-type MC.

Case 1: both PM and A are stochastic. If PM is transient (i.e.
d > 0), then PM is GT.

Case 2: PM is not stochastic but A is stochastic.

(i) If d > 0, then PM is GT.

(ii) If d = 0 and G is irreducible, then PM is transient but not
`-transient for any ` ≥ 1.

(iii) If d < 0, then PM is GT iff min{φA, φB} > 1 (φA is the
radius of convergence of A(z)); and PM is `-transient for some
` ≥ 1 iff

∑∞
k=0 k`Ak <∞ and

∑∞
k=0 k`Bk <∞.

Case 3: A is not stochastic. PM is GT.
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Remarks about proof

(i) Using Proposition 1: through three basic equations

F00(s) = sB0 +
∞∑

v=1

sBvG v−1(s)F10(s).

F10(s) = sC0 +
∞∑

v=1

sAvG v−1(s)F10(s).

G (s) =
∞∑

v=0

sAvG v (s).

(ii) Spectral properties + matrix analytical arguments+�y{
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GI/M/1-type Markov chains

Theorem 2µLet PGI be an irreducible GI/M/1-type MC.

Case 1: both PGI and A are stochastic. If PGI is transient
(d < 0), then PGI is GT iff φA > 1, and PGI is `-transient for
some ` ≥ 1 iff

∑∞
k=1 k`+1Ak <∞.

Case 2: PGI is not stochastic, but A is stochastic.

(i) If d < 0, then PGI is GT iff φA > 1; and PGI is `-transient
for some ` ≥ 1 iff

∑∞
k=1 k`+1Ak <∞.

(ii) If d = 0 and G is irreducible, then PGI is not `-transient
for any ` ≥ 1.

(iii) If d > 0, then PGI is GT.

Case 3: neither PGI nor A is stochastic. PGI is GT.
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Remarks about proof

Using Proposition 1: we do not have similar equations like
that for PM , which causes difference.

For example, to consider algebraic transience for PGI , define

F (s, z) =
∞∑
i=1

Fi0(s)z i , D(z) =
∞∑

k=1

Dkzk , s < 1, z < 1.

Then we can express F10(s) through (Hou and Liu 2004)

(zI − sA(z))F (s, z) = sz [D(z)− A0F10(s)].
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Extension to CTMCs

. Consider a CTMC Φt with irreducible and bounded
generator Q and transition function Pij(t).

. Let h > q̄ and define the h-uniformized chain Φh(n) with
transition matrix P̂ij = (I + h−1Q)ij , i , j ∈ E. Using

Pij(t) = (etQ)ij =
∞∑

n=0

P̂ij(n)e−th (th)n

n!
,

shows that algebraic transience and geometric transience are
equivalent for Φt and Φh(n).

. Using Theorems 1 and 2, we can get the classification of
transience for continuous-time chains.
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Welcome to 16th WMPRT at CSU in Changsha!
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Thank you for your attention!
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